SIMPLIFICATION

KEY POINTS

$$(a+b)^2 = a^2 + b^2 + 2ab$$

2)
$$(a-b)^2 = a^2 + b^2 - 2ab$$

3)
$$a^2 - b^2 = (a + b)(a - b)$$

4) Square root of a number is a value that, when multiplied by itself, gives the given number.

Example

36 has two square roots 6 and -6;

$$6^2 = 36$$
 and $-6^2 = 36$, hence we write $\sqrt{36} = \pm 6$

5) Square root by Factorization method Find square root of 1089

First find the factors of 1089.

$$1089 = 3 \times 3 \times 11 \times 11$$

$$\sqrt{1089} = 3 \times 11 = 33$$

6) Square root by Division method Find square root of 2304.

Note:- Make group of two digit from right

$$\sqrt{2304} = 48$$

7) If $\sqrt{?} = x$, then the required number will be $= x^2$

8)
$$\sqrt{a^4 \times b^4 \times c^4} = a^2 b^2 c^2$$

9)
$$\sqrt{a^n \times b^m} = a^{\frac{n}{2}} \times b^{\frac{m}{2}}$$

$$10) \ \frac{\sqrt{x}}{\sqrt{y}} = \sqrt{\frac{x}{y}}$$

11)
$$\sqrt{x} \times \sqrt{y} = \sqrt{xy}$$

10) If any number ends with 1, its square root will end with 1 or, 9, given that the number is a perfect square.

Example:
$$\sqrt{81} = 9$$
, $\sqrt{121} = 11$

11) If any number ends with 4, its square root will end with 2 or, 8, given that the number is a perfect square.

Example:
$$\sqrt{324} = 18$$
, $\sqrt{124} = 12$

12) If any number ends with 5, its square root will end with 5, given that the number is a perfect square.

Days: 6th - 9th

Example:
$$\sqrt{225} = 15$$
, $\sqrt{625} = 25$

13) If any number ends with 6, its square root will end with 6, given that the number is a perfect square.

Example:
$$\sqrt{256} = 16$$
, $\sqrt{676} = 26$

14) If any number ends with 9, its square root will end with 3 or 7, given that the number is a perfect square.

Example:
$$\sqrt{49} = 7$$
, $\sqrt{169} = 13$

15) The square of any number always ends with 0, 1, 4, 5, 6 or, 9 but will never end with 2, 3, 7 or, 8.

16) If in a given number, the total number of digits are n and if n is even, the square root of that number will have $\frac{n}{2}$ digits and if n is odd, then the

number of digits will be $\frac{n+1}{2}$.

17)
$$\sqrt{x\sqrt{x\sqrt{x...n}}} = x^{\frac{2^n-1}{2^n}}$$

Example

Find the value of
$$\sqrt{2\sqrt{2\sqrt{2}\sqrt{2}}}$$

Here,
$$n = 5$$
, $\therefore \sqrt{2\sqrt{2\sqrt{2\sqrt{2}}}} = \frac{2^5 - 1}{2^5 - 1}$

$$2^{\frac{2^{5}-1}{2^{5}}}$$

$$=2^{\frac{31}{32}}$$

18)
$$\sqrt{x\sqrt{x\sqrt{x...\infty}}} = x$$

Example
$$\sqrt{7\sqrt{7\sqrt{7...\infty}}} = 7$$

19) To find the value of
$$\sqrt{x + \sqrt{x + \sqrt{x + ...\infty}}}$$
, find the factors of x, such that the difference between the factors is 1, then the larger factor will be the result.

20) To find the value of $\sqrt{x-\sqrt{x-\sqrt{x-...\infty}}}$, find the factors of x, such that the difference between the factors is 1, then the smaller factor will be the result.

Example: Find the value of
$$\sqrt{12 + \sqrt{12 + \sqrt{12 + \dots \infty}}}$$

The factors of 12 with a difference of 1 are 4, 3. Here, 4 is the larger number. ∴ Value will be 4.

Conventional method

Let
$$\sqrt{12 + \sqrt{12 + \sqrt{12 + \dots \infty}}} = x$$

 $\Rightarrow \sqrt{12 + x} = x$
 $\Rightarrow 12 + x = x^2 \Rightarrow x^2 - x - 12 = 0 \Rightarrow x^2 - 4x + 3x - 12 = 0$
 $\Rightarrow (x - 4)(x + 3) = 0 \Rightarrow x = 4 \text{ and } x = -3$
 $\therefore x = 4$

Example

Find the value of

$$\sqrt{30-\sqrt{30-\sqrt{30-\dots\infty}}}$$

The factors of 30 with a difference of 1 are 5, 6. Here, 5 is the smaller number. ∴ Value will be 5.

21) If any number is in $\frac{1}{\sqrt{a} \pm \sqrt{b}}$ form, then we multiply by its rationalization factor $\sqrt{a} \mp \sqrt{b}$ in both numerator and denominator.

Example: Find the value of $\frac{1}{\sqrt{9}-\sqrt{8}}$;

$$\frac{1}{\sqrt{9} - \sqrt{8}} = \frac{1}{\sqrt{9} - \sqrt{8}} \times \frac{\sqrt{9} + \sqrt{8}}{\sqrt{9} + \sqrt{8}}$$
$$= \frac{\sqrt{9} + \sqrt{8}}{\sqrt{9}^2 - \sqrt{8}^2} = \frac{3 + 2\sqrt{2}}{1} = 3 + 2\sqrt{2}$$

Cube and Cube Root

KEY POINTS:

1) If a number is multiplied two times with itself, then the result of this multiplication is called the cube of that number.

Example: $2 \times 2 \times 2 = 2^3$

Cube root of $2^3 = \sqrt[3]{2^3} = 2^{3 \times \frac{1}{3}} 2 = 2$

2) Algebraic method to calculate cube:

$$(a+b)^3 = a^3 + 3ab(a+b) + b^3$$
$$(a-b)^3 = a^3 - 3ab(a-b) - b^3$$

Indices and Surds

Key Points:

1)
$$p^m \times p^n = p^{m+n}$$

2)
$$(p^m)^n = p^{mn}$$

$$3) \ \frac{p^m}{p^n} = p^{m-n}$$

4)
$$\left(\frac{p}{q}\right)^n = \frac{p^n}{p^n}$$

5)
$$p^0 = 1$$

6)
$$p^{-n} = \frac{1}{p^n}$$

$$7) p^{\frac{1}{m}} = \sqrt[m]{p}$$

8)
$$\sqrt[m]{p} = p^{\frac{1}{m}}$$

9)
$$\sqrt[m]{pq} = \sqrt[m]{p} \times \sqrt[m]{q}$$

10)
$$\sqrt[m]{\frac{p}{q}} = \frac{\sqrt[m]{p}}{\sqrt[m]{q}}$$

11)
$$\left(\sqrt[m]{p}\right)^m = p$$

KEY POINTS

- 1). Conversion of complex arithmetic expression into simple one is called simplification.
- 2). VBODMAS Rule: Vinculum > Brackets > Of > division > multiply > addition > subtraction
- * First solve vinculum i.e. bar.

Eg:
$$(7 - \overline{5 - 4}) = ?$$

First solve 5 - 4 i.e. 1 then 7 - 1 = 6.

- * For brackets open first small brackets (...), then {...} and then [...].
- * For modulus e.g. |-3| we write magnitude only not sign i.e. 3 in this case.

Important Formulas

1).
$$(a+b)^2 = a^2 + 2ab + b^2$$

2).
$$(a-b)^2 = a^2 - 2ab + b^2$$

3).
$$(a^2 - b^2) = (a + b)(a - b)$$

4).
$$(a+b)^3 = a^3 + b^3 + 3ab(a+b)$$

5).
$$(a-b)^3 = a^3 - b^3 - 3ab(a-b)$$

6).
$$(a^3 + b^3) = (a + b)(a^2 - ab + b^2)$$

7).
$$(a^3 - b^3) = (a - b)(a^2 + ab + b^2)$$

8).
$$a^3 + b^3 + c^3 - 3abc$$

$$= (a+b+c) \left(a^2 + b^2 + c^2 - ab - bc - ca\right)$$

$$= \frac{1}{2} (a+b+c)[(a-b)^2 + (b-c)^2 + (c-a)^2]$$
Here, if $(a+b+c) = 0$,
then $a^3 + b^3 + c^3 - 3abc = 0$

$$\Rightarrow a^3 + b^3 + c^3 = 3abc$$
9). $(a+b+c)^2$

$$= \left(a^2 + b^2 + c^2\right) + 2(ab+bc+ca)$$

Variety Questions

Q1. If
$$\left[\left\{\left(\frac{2}{3}\right)^3\right\}^{(2x+3)}\right]^{\frac{-3}{4}} = \left[\left\{\left(\frac{2}{3}\right)^{\frac{2}{3}}\right]^{\frac{2}{3}}$$

 $\left\{\left(3x+7\right)\right\}^{\frac{-6}{5}}$ then the value of $\sqrt{2-42x}$ is:

SSC CHSL 18-03-2020 (Morning shift)

(a) 5 (

(b) 6

(c) 3 (d)

Q2.If the following interchanges are made in signs and numbers, which equation would be correct?

Interchanges:

Signs: ÷ and -

Numbers: 15 and 5

SSC CHSL 13-10-2020 (Morning Shift)

(a)
$$4 \times 30 - 15 \div 5 + 12 = 21$$

(b)
$$12 \times 30 - 15 \div 5 + 4 = 37$$

(c)
$$4 \times 30 - 15 \div 5 + 12 = 27$$

(d)
$$4 \times 30 - 5 \div 15 + 14 = 21$$

Q3.If '+' means '-', '-' means '+', '×' means '
$$\div$$
' and ' \div ' means '×' then the value of $\frac{42-12\times3+8\div2+15}{8\times2-4+9\div3}$ is: SSC CGL 3 March 2020 (Morning)

(a)
$$-\frac{5}{3}$$
 (b) $-\frac{15}{19}$ (c) $\frac{15}{19}$ (d) $\frac{5}{3}$

Q4. The value of
$$\frac{(4.6)^4 + (5.4)^4 + (24.84)^2}{(4.6)^2 + (5.4)^2 + 24.84}$$

SSC CGL Tier II - 13 September 2019

(a) 24.42

(b) 24.24

(c) 25.42

(d) 25.48

Q5. The value of
$$\frac{(0.545)(0.081)(0.51)(5.2)}{(0.324)^3 + (0.221)^3 - (0.545)^3}$$
 is: SSC CGL Tier II - 12 September 2019

SSC CGL TICLIT - 12 September 201

(a) -1 (b) 1 (c) 3 (d) -3

Q6. The value of 22. $\overline{4} + 11.5 \overline{67} - 33.5 \overline{9}$ is:

- SSC CGL Tier II 11 September 2019
- (a) $0.\overline{32}$
- (b) 0.412
- (c) $0.3\overline{1}$
- (d) $0.4\overline{12}$

Q7. If
$$x = \frac{1}{12.13} + \frac{1}{13.14} + \frac{1}{14.15} \dots$$

 $+ \frac{1}{23.24}$, $y = \frac{1}{36.37} + \frac{1}{37.38} + \frac{1}{38.39} \dots$
 $+ \frac{1}{71.72}$ then $\frac{x}{y}$ is equal to:

SSC CHSL 10 July 2019 (Evening)

(a)
$$\frac{1}{3}$$
 (b) $\frac{1}{24}$ (c) $\frac{1}{72}$ (d) 3

Q8. The value of 99 $\frac{95}{99} \times 99 - 95$ is:

SSC MTS 9 August 2019 (Morning)

- (a) 9897
- (b) 9993
- (c) 9999
- (d) 9801

Q9. Find the value/ मान ज्ञात करें

$$\big\{\frac{(0.7)^2 \div 0.14 + (0.6)^2 \div 0.18 + (0.5)^2 \div 0.05}{4(2.5 \text{ of } 4 - 13 \times 0.25 \times 3)}\big\}$$

SSC MTS 7 August 2019 (Morning)

(a)
$$\frac{25}{2}$$
 (b) $\frac{19}{2}$ (c) $\frac{23}{2}$ (d) $\frac{21}{2}$

Q10. The simplified value of $\frac{0.01404}{24^2+6^2-144}$ is: SSC CHSL 10 July 2019(Evening)

- (a) 3×10^{-5} 3
- (b) 6×10^{-5}
- (c) 2.4×10^{-4}
- (d) 3×10^{-4}

Q11. Find the value of $\sqrt{4 + \sqrt{144}}$ SSC CPO 14 March 2019 (Evening)

(a) 14 (b) 12.17 (c) 4 (d) 3.74 Q12.

 $\begin{array}{ll} \underline{5.75\times5.75\times5.75+3.25\times3.25\times3.25}\\ 57.5\times57.5+32.5\times32.5-57.5\times32.5\\ \text{equal to:} \end{array} \quad \text{is}$

SSC CPO 12 March 2019 (Evening)

- (a) 0.009
- (b) 0.0009
- (c) 0.9
- (d) 0.09

Q13. The simplified value of

$$\frac{(3\frac{1}{5} - \frac{3}{5}) \div \frac{8}{5}}{1\frac{1}{7} \div \{\frac{6}{7} - (\frac{1}{7} \div \frac{1}{5})\}} \text{ is:}$$

SSC CHSL 5 July 2019(Afternoon)

(a)
$$\frac{13}{64}$$
 (b) $\frac{13}{16}$ (c) $\frac{13}{8}$ (d) $\frac{13}{7}$

Q14. What is the simplified value of $5 \div 10 \text{ of } 10 \times 4 + 4 \div 4 \text{ of } 4 \times 10 - (10 - 4) \div 16 \times 4$

- (a) 1.2 (b) 2.5
 - 2.5
- (c) 21
- (d) 58.5

Q15. The value of 4.5 - $(3.2 \div 0.8 \times 5)$ $+3 \times 4 \div 6$ is SSC CGL 10 June 2019 (Afternoon)

(a) -13.5 (b) 4.2 (c) -8.5 (d) 5.7

Q16. The value of $\frac{8}{9}$ of $(5\frac{1}{4} \div 2\frac{1}{3})$ of 4) $\div (8 \div \frac{2}{3} \text{ of } \frac{4}{5}) \text{ of } (8 \times \frac{2}{3} \div \frac{4}{5}) \text{ is}$

SSC CGL 7 June 2019 (Morning) (a) $1\frac{1}{8}$ (b) $\frac{4}{15}$ (c) $\frac{1}{200}$ (d) $\frac{1}{100}$

Q17. The value of $16 \div 4$ of $4 \times [3 \div 4]$ of $\{4 \times 3 \div (3+3)\}\] \div (2 \div 4 \text{ of } 8) \text{ is } :$ SSC CGL 6 June 2019 (Evening) (a) 6 (b) 9 (c) 48 (d) 16

Q18. The value of $\frac{9}{15}$ of $(\frac{2}{3} \div \frac{2}{3})$ of $\frac{3}{2}$)÷ $(\frac{3}{4} \times \frac{3}{4} \div \frac{3}{4} \text{ of } \frac{4}{3})$ of ($\frac{5}{4} \div \frac{5}{2} \times \frac{2}{5} \text{ of } \frac{4}{5} \text{)is :}$

SSC CGL 6 June 2019 (Afternoon) (a) $\frac{20}{9}$ (b) $\frac{4}{25}$ (c) $\frac{18}{125}$ (d) $\frac{40}{9}$

Q19. The value of $5 \div 5$ of $5 \times 2 + 2 \div$ 2 of 2 \times 5 - (5-2) \div 6 \times 2 is: SSC CGL 4 June 2019 (Afternoon) (a) $\frac{9}{5}$ (b) $\frac{19}{10}$ (c) 19 (d) $\frac{23}{2}$

Q20. The simplified value of $1.0025 + 6.25 \times 10^{-6}$ 0.0025+0.95

SSC CHSL 9 June 2019 (Evening)

- (a) 1.0025
- (b) 1.0525
- (c) 1.0005
- (d) 1.0505

Q21. The value of $(5+3 \div 5 \times 5) / (3 \div 3)$ of 6) of $(4 \times 4 \div 4 \text{ of } 4 + 4 \div 4 \times 4)$ is SSC CGL 6 June 2019 (Morning)

(a) $8\frac{1}{5}$ (b) $7\frac{1}{3}$ (c) $9\frac{3}{5}$ (d) $6\frac{2}{3}$

Q22. The value of $2\frac{7}{8} \div (3\frac{5}{6} \div \frac{2}{7} \text{ of } 2\frac{1}{3}) \times [(2\frac{6}{7} \text{ of } 4\frac{1}{5})]$ $\div \frac{2}{3} \times \frac{5}{9}$ is:

SSC CGL 4 June 2019 (Evening)

- (a) $\frac{1}{4}$ (b) 4 (c) $\frac{1}{23}$ (d) 5

Q23. The value of $2 \times 3 \div 2$ of $3 \times 2 \div (4)$ $+ 4 \times 4 \div 4 \text{ of } 4 - 4 \div 4 \times 4$) is: SSC CGL 4 June 2019 (Morning)

(b) 1 (c) 4

Practice Questions

SSC CGL 2021

Q24. The value of $20 \div 5$ of $8 \times [9 \div 6 \times$ (6-3)] - $(10 \div 2 \text{ of } 20)$ is: SSC CGL 13/8/2021 (Morning) (a) 6 (b) 1 (c) 0

Q.25. The value of $3 \div 18$ of $3 \times 6 - 22 \times 10^{-2}$ $6 \div 18 - 3 \div 2 + 10 - 3 \div 9 \text{ of } 3 \times 9 \text{ is:}$ SSC CGL 13/8/2021 (Afternoon) (a) -1/3 (b) -1/2 (c) 1/2 (d) 1/3

Q.26 The value of $14 - 20 \times [7 - \{18 \div 2\}]$ of 3 - $(15 - 25 \div 5 \times 4)$ }]. SSC CGL 13/8/2021 (Evening) (b) 24 (c) 6

Q.27. The value of $90 \div 20$ of $6 \times [11 \div$ 4 of $\{3 \times 2 - (3 - 8)\}\] \div (9 \div 3 \times 2)$ is: SSC CGL 13/8/2021 (Evening) (a) $\frac{1}{36}$ (b) $\frac{1}{32}$ (c) $\frac{9}{8}$ (d) $\frac{3}{8}$

of O.28. value $\frac{52 - 1170 \div 26 + 13 \times 2}{2 + 1\frac{1}{8} \text{ of } 2 - 1\frac{1}{4}} \text{ is:}$

SSC CGL 16/8/2021 (Morning) (a) 11 (b) 12 (c) 41 (d) 27

Q.29 The value of $3\frac{5}{6} + [3\frac{2}{3} + {\frac{15}{4}}]$ (5 $\frac{4}{5} \div 14 \frac{1}{2}$)}] is equal to:

SSC CGL 16/8/2021 (Afternoon) (a) 9 (b) 6 (c) 7

Q30. The value of $25 \div 15$ of $4 \times [4 \div 5]$ \times (9-7)]-(20 ÷ 5 of 9) is : SSC CGL 16/8/2021 (Evening)

(a) $\frac{4}{9}$ (b) $\frac{2}{3}$ (c) $\frac{1}{3}$ (d) $\frac{2}{9}$

Q31. The value of $32 \div 12$ of $3 \times [5 (15-12) \div 9$ of $3/7 + 4 - 8 \div 2$ of 4 is: SSC CGL 17/8/2021 (Morning) (a) $1\frac{7}{9}$ (b) $4\frac{7}{9}$ (c) $3\frac{1}{3}$ (d) $3\frac{1}{6}$

 $\frac{1}{5} \div \left[3\frac{1}{2} - \left\{\frac{5}{6} - \left(\frac{3}{5} + \frac{1}{10} - \frac{4}{15}\right)\right\}\right]$

SSC CGL 17/8/2021 (Afternoon)

- (a) 12/31
- (b) 22/31
- (c) 52/31
- (d) 72/31

Q33. Simplify the following expression $(\frac{7}{16} \div \frac{1}{2} \text{ of } \frac{1}{5}) \times \frac{4}{5} - \frac{1}{3} \times \frac{5}{8} \div \frac{1}{2} + \frac{3}{4}$ SSC CGL 17/8/2021 (Evening)

- (a) 317/96
- (b) 10/3
- (c) 71/150
- (d) 23/6

Q34. Simplify the following expression $108 \times 108 \times 108 - 92 \times 92 \times 92$ $108 \times 108 + 92 \times 92 + 108 \times 92$ SSC CGL 17/8/2021 (Evening) (a) 200 (b) 1 (c) 16 (d) -1

Q35. The value of $18 \div [26 - \{25\}]$ $-(15-5) \div 2$ of $12+2-2 \div 4 \times 16$

SSC CGL 18-08-2021 (Morning) (a) 9/4 (b) 3/2 (c) -25/2 (d) -23/4

Q.36. Simplify the following expression: $6 \div 4 \text{ of } 3 - 4 \div 6 \times (13 - 10) - 2 \times 15 \div 6$

SSC CGL 18-08-2021 (Afternoon)

- (a) $-19 \frac{1}{2}$

- (c) $-31\frac{1}{2}$ (d) $-29\frac{14}{17}$

Simplify the Q37. expression. $441 \div \left[270 \div \frac{3}{7} + (17 \div \frac{1}{3}) - (8\frac{1}{2} - \frac{5}{2})\right]$ SSC CGL 18-08-2021 (Evening)

(a) $\frac{49}{75}$ (b) $\frac{39}{75}$ (c) $\frac{19}{75}$ (d) $\frac{29}{75}$

Q38. Simplify. $(x-y+z)^2 - (x-y-z)^2$. SSC CGL 20/8/2021 (Morning)

- (a) 2xz + 2yz
- (b) 4yz 4xz
- (c) 4xz + 4yz
- (d) 4xz 4yz

Q39. Simplify the following expression: $3 \times 8 \div 9 \text{ of } 6 - 2 \div 3 \times (5 - 2) \times 2 + 18 \div$ 3 of 3.

SSC CGL 20/8/2021 (Morning) (a) -4 (b) 2 $\frac{12}{13}$ (c) -1 $\frac{5}{9}$ (d) 2 $\frac{1}{3}$

Q40. Simplify the following expression:

SSC CGL 20/8/2021 (Afternoon)

(a) $9\frac{3}{4}$ (b) $12\frac{3}{4}$ (c) 39 (d) $42\frac{3}{4}$

Q41. Simplify the following expression $8 \div 4 \text{ of } 2 - 15 \div 2 \text{ of } 5 - 6 \div 5 \times (-7 + 5)$

SSC CGL 20/8/2021 (Evening

(a) $31 \frac{7}{10}$ (b) $7 \frac{3}{10}$ (c) $4 \frac{3}{10}$ (d) $-\frac{1}{5}$

Q42. Simplify the following expression: $7 \times 4 \div 21 \text{ of } 4 - 5 \div 4 \times (9 - 13) + 2 - 2 \div$

SSC CGL 23/8/2021 (Morning)

(a) $7\frac{1}{12}$ (b) $5\frac{1}{3}$ (c) $12\frac{1}{2}$ (d) $5\frac{1}{16}$